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Extended Electron States in Proteins™®
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A new approach to the problem of electron states in the protein molecule is described. A
‘dielectric cavity’ model for a protein globule is used as a basis to consider the extended states
which are mostly formed by the polarization field of the protein macromolecule. In a protein
'solution the size of such a state can be compared with the size of the macromolecule. The share
of the extended states in the biomolecular processes of charge transfer is discussed. Electron
energies of the ground and the first excited self-consistent states are calculated. Typical values
of the predicted energies of absorption bands and luminescence are found to be ca 1000 nm for
the ground state absorption band and ca 2000 nm for the excited state luminescence. Various
ways of experimentally observing such states are discussed.
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INTRODUCTION

The large-distance electron transfer is one of the
central problems of molecular biology. It is a well
established fact that the electron can move large
distances in biological systems. Theoretical
studies in this field were stimulated by de Vault
and Chance,! who measured the temperature
dependence of the rate of electron transfer from
cytochrome c to chlorophyll. Currently, the pre-
dominant point of view considers this multi-
tunnelling transport with an unambiguously
identifiable intermediate to be one of the possible
mechanisms of this phenomenon.?? In applica-
tion to biological systems, the theoretical founda-
tions of electron transfer are due to Foerster,*>
Marcus,® Jortner” and Hopfield,®? who in turn
proceeded from the idea of non-radiatory electron
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transfer in condensed media, which was first
suggested by Pekar '’ and Huang and Rhys.'! The
idea of polaron states in condensed media is the
basic one for the theory of non-radiative electron
transfer, and allows a deep insight into the
processes of electron transfer in biological
systems. Therefore, research into the theory of the
polaron in condensed systems may significantly
broaden our knowledge of the electron states and
transfer in biological systems.

The most general representation of the polaron
may be given by the picture of an electron which,
if placed in a polar medium, goes to a self-
localized state where it does not form chemical
bonds with the atoms of the medium. The polaron
may be imagined as an electron being trapped by
a potential well formed by electron-induced polar-
ization of the surrounding molecules of the
medium. ' Using this representation, it was dis-
covered that there are multiple, not just one,
discrete polaron states which have their own
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potential wells consistent with the electrons
trapped. '%'!3 One of the principal consequences is
that even the first excited self-consistent polaron
state has a large excitation region, and may
include ca 10°-10* or more molecules of the
medium for water, ammonia and other polar
liquids. These findings in turn point to the
necessity for critically analysing the problem of
large-distance electron transfers, namely their bio-
logical role and impact. This paper is concerned
with studies of these states in protein macromol-
ecules. We shall show that the allowance for the
electron large-radius states may lead to many new
results. The: very fact that they exist suggests new
types of absorption and luminescence in solutions
of globular proteins. For a spherically sym-
metrical protein with an electron acceptor in the
centre of the globule, the presence of an excited
polaron state of large radius implies isotropy of
binary chemical reactions under excitation.

This paper is intended to make the physical rep-
resentation of the polaron in a condensed medium
in agreement with the representation of the
polaron properties of the protein molecule. We
shall formulate simple mathematical models of
the polaron states in the protein and discuss some
of the effects to which they lead.

A CONTINUUM MODEL

To introduce what is meant by large-radius elec-
tron states in globular protein macromolecules it
is necessary to examine continuum represen-
tations of these objects. It is also desirable to
discuss the hierarchy of the continuum models
that we shall use. The representation of a protein
macromolecule that takes the form of a sphere in
solution as its microphase was introduced by
Bresler and Talmud,'® who proceeded from
hydrophobic properties of the protein. Progress in
the modelling of protein globules led, in turn, to
a whole set of electrostatic models.!*!® The
simplest of them, which is the model of dieleciric
cavity, is shown in Fig. 1. The model assumes that
€, < €0, which corresponds to a low static dielec-
tric permittivity of the protein medium compared
with the strongly polarized solvent. We stress that
this model, although very simple, can give a quali-
tative explanation of many experimental findings
on protein transport and electrophoresis. !’

A more realistic model of a three-layer globule
is shown in Fig. 2. This model allows for the con-
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Figure 2. A three-layer model of the protein globule.

tribution of different factors to dielectric permit-
tivity in the region R, < r < R,. The factors are
the presence of amino acids residues, the penetra-
tion of water molecules into the superficial layer,
the non-smoothness of the protein surface, etc.
We assume that the solvent molecules cannot pen-
etrate into the region r < R;. In this model
€1 < & < €. Physical values of dielectric permit-
tivities can be taken from an experiment: &; = 4 is
the value for N, N-dimethylacetamide, which is
the monomeric analogue of the protein peptide
framework (the solvent impervious region
r < R)); g0 = 80 is the value for water as a solvent;
and the layer R; < r < R; is ascribed a mean value
of £; = 40, which in a more general sense is a par-
ameter of the modei. There are many models
which assume that dielectric permittivity inside
the globule depends on a coordinate (such as
e=|r|),'® and various non-local continuum
models of dielectric cavities. '°

While substantiating a mathematical model of
polaron-type electron states in the protein
globule, the ratio {r)/a is the most important par-
ameter, where a is the mean distance between two
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(b)

Figure 3. (a) A plane projection of the instantaneous con-
figuration of the main chain (—N—-C*—C—)ss of a ferre-
doxin molecule and (b) overlapped projections for ten
consecutive configurations of this molecule taken with a
time At of 0.6 ps.

neighbouring atoms of the protein molecule and
{r) is the effective polaron radius. The estimate a
draws a clear distinction between a protein macro-
molecule and an ionic crystal for which the cri-
terion {(r)/a> 1 shows that the model is a
continuum. In the ionic crystal polarization is
caused by a small deviation of ions from their
equilibrium states, so that @ = a, where a is the
lattice constant. The protein molecule requires an
additional averaging if the lifetime of the electron
state is much larger than the characteristic time
for oscillation of twisting degrees of freedom and
for deviations of macromolecular polar groups,
which normally is less than 10~ !2 s. This situation
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is illustrated in Fig. 3, which is the result of a
molecular-dynamic computer simulation. In this
way for the less long-lived states the model of a
polar medium is ‘more continuum’ in the protein
molecule than in the ionic crystal.

A POLARON MODEL FOR AN INFINITE
ISOTROPIC MEDIUM (ACCORDING TO
PEKAR'9)

A polaron description of the electron state in a
polar medium usually starts with the assumption
that the mean Coulomb field induced by the
surplus elecron locally polarizes the medium. The
electric field in turn influences the electron. '® It is
essential that the electron interacts only with the
inertial part:

P(r) =Po(r) — Pwo(r) ¢))
where
Po=£0— 1 D, Pw=eeo_ 1
TE A7 e

are dipole moment densities of static and high-
frequency polarizations, € and é» are static and
high-frequency dielectric permittivities, respect-
ively, and D is electric induction. Hence,

D(r)

P00 =

2

1

x-1

§1=gs' —eg! is the effective dielectric permit-
tivity. The vector of electric induction caused by
the distributed electron charge with density,
e| ¥(r)|? is equal to

D(r)=e§ | @)|?

where ¥ (r) is the wave function, which can be
obtained from the solution of the Schrédinger
equation:

2

%— AY¥(r) + elI(r)¥(r) + W¥()=0 (4)
m

where W is the electron energy. The potential

I1(r), created by the electron-induced polarization

VII(r) = 4«P(r), can, using Eqns (2) and (3), be

found from the Poisson equation:

ATI(r) + 4wé e | ¥ (r) |2 =0 (5)

The system of non-linear differential equations
(4) and (5) fully determines the state of an electron
in an infinite polar medium. Pekar'® uscd the

r—r’

m dr’ (3)
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variational principle to find the ground state of
Eqns (4) and (5). Balabaev and Lakhno'? inte-
grated them numerically and obtained solutions
corresponding to the excited polaron states dif-
ferent from the ground state. The approach that
we have given here will be used further to describe
the polaron states in a protein globule.

THE POLARON EQUATION FOR A PROTEIN
GLOBULE

Our mathematical model of polaron states in the
protein globule described by the model of dielec-
tric cavity is based on the following assumptions:
(i) the globule is neutral and has zero effective
surface net charge on the layer boundaries; (ii) the
electron states in the globule are thought of as the
acceptor’s potential-bound polaron states; (iii)
each layer is described by a separate isotropic
model of a continuous polar medium, and the
electron wave function and the potential are
assumed to be smooth both within and on the
boundaries of each layer; and (iv) all the other
assumptions are identical with those adopted to
describe the polaron states in polar media. '°

For a spherically symmetrical case the above
assumptions yield the following equations for the
polaron in a protein globule:

n (1 d d
% (ra )

+ e[Il(r) + <I>(r)]\l'(r) +W¥@r)=0 (6)
1.4 ... 4d,
2 a4 dH()+ C¥2(r)=0 (7)

Ri-1 <r<R,, i=1,2...;Ro=0
where ®(r) is the potential of the acceptor:
glewrr + ¢ r<R,
d(r)= 8
) {q/ezr r>R, ®)

for the two-layer model of the globule (&2 = &)
and

gler + ¢ r< R,
&(r)= {g/esr+c3 Ry, <r<R, 9
qlesr r>R,;

for the three-layer model of the globule (&3 = ).
The constant ¢;, ¢{ and c¢3 are defined from the
continuity of potential ®(r) at the boundaries of
globular layers, I1(r) is the potential of electron-
induced polarization, u is the electron effective
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mass, € ' =ex' — e;! are the effective dielectric
constants of the ith layer and e. is the high-
frequency dielectric constant, which we assume to
be identical for all the layers.

The natural boundary conditions for Eqns. (6)
and (7) follow from the condition that the wave
function is bounded and continuous and that the
potential is continuous on the boundaries of
globular layers, so that

¥’ (0)+"qe ¥(0)=T1"(0) =0, ¥ (c0) =TI(c0) =0

YRi—0)=¥(Ri+0), Y"(Ri-0)=¥'(Ri +0)
I(R; — 0) =II(R; + 0), &I1'(R; - 0)
= &-1IT"(Ri + 0)
(10)

Equation (6) is the Schrédinger equation for the
electron in the potential — (IT + &), which is given
in a self-consistent way by Eqn (7). Therefore, the
non-linear system of differential equations (6) and
(7) with the boundary conditions (10) describes
bound polaron states in the protein globule. Its
solution determines the wave function of the elec-
tron state ¥ and the electron energy W, in
addition to the total energy of the Ir, which is
given by the function

2
ey, =2 g (V¥) dr—e S Y2(IT + &) dr
2u

& )
+3 o L,. (VIDZ dr (1)

The last term of Eqn. (11) is integrated over
regions Q;, which correspond to the layers of the
dielectric cavity model. We should stress that
Eqgns (6) and (7) may be given by an independent
variation of the function (11) with respect to the
wave function ¥ (r) and the potential IT(r) with
the wave function normalized by § ¥2(r) dr=1.

SOLUTIONS OF POLARON EQUATIONS. THE
GROUND STATE

The system of Eqns (6) and (7) with the boundary
conditions (10) can be integrated numerically. The
details of the algorithm are described in the
Appendix. The case of polar media homogenity
(all &; = &0) suggests an F-centre problem as solved
by Lakhno and Balabaev.!® If one considers a
many-layer model of a protein globule, the sol-
ution of Eqns (6) and (7) is analogous to the pre-
vious one. It will be shown in the Appendix that
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the system has a discrete set of solutions which are
the self-consistent states of the electron and the
polarization of the globule and its surroundings.
Figure 4(a) shows a node-free solution (zero
mode) and Fig. 4(b) the solution with a node
which corresponds to the excited self-consistent
state (first mode). In this section we consider only
the findings for the ground state.

For the two- and three-layer models of a dielec-

V .
-0.03

Figure 4. Solutions of the polaron equations for (1) the
two-layer and (2) the three-layer models of the protein
globule: (a) zero mode; (b) first mode. The upper part
of the figure shows functions ¥(X) (§ 47X?¥? dX=1)
and the lower part shows functions II(X) #3/pe®
[ = 0.09I1(X)].

159

Table 1. Polaron state characteristics in the protein
globule

Two-layer model® Three-layer model®
Physical
value® O-mode 1-mode 0-mode 1-mode
Wis -1.316 -0.401 -2.200 -1.035
Wis -0.529 -0.256 -0.697 -0.424
Wap -0.695 -0.283 -0.806 -0.413
hs -0.508 -0.238 -1.243 -0.779
ls 0.280 -0.093 0.255 -0.169
he 0.114 -0.120 0.146 -0.158
(s 3.7 8.3 2.3 3.1
(r)as 10.0 19.5 7.6 12.2
(r)ap 6.8 16.0 5.7 11.0

2The values of energies Wis. Wzs, sz, sz and /15, IZS.: 1273
are in eV; the average radii {r)is, {rzs, (r)zp are in A.
°£‘1=20, f.‘z=80, €o=2, R1=15A,y=mo,.z=1. .
‘er=4, =40, £=80, ex=2, Ri=7A. R;=15A,
® =My, Z=1.

tric cavity, Table 1 lists the following values which
characterize the self-consistent ground state: clec-
tron (W;s) and total (/;s) energies; electron levels
(non-self-consistent) in 2S (W>s) and in 2P (Wsp)
states and the corresponding total energies
(I2s, Ip), as well as the radii of the states
({ry1s, (rdzs, {rzp) for both the models.

It can be seen that for the more realistic three-
layer model the polaron radius in the ground state
is {(r)1s=2.3 A, which is outside the approxi-
mation of the continuum model. Accordingly,
the quantity AWsap=|Wap— Wis| =1.2eV
(ca 1000 nm) falls just inside the region of transi-
tions with charge transfers of metal-containing
proteins. 202!

THE EXCITED POLARON STATES IN THE
PROTEIN GLOBULE

Table 1 lists both electron (W) and total (/) ener-
gies and radii (r) in the excited self-consistent
state (2S) and the non-self-consistent states 1S and
2P, which correspond to the potential polaron
well 2S [Fig. 4(b)]. Note first that the radii of the
excited self-consistent states of both two- and
three-layer models, which are 19-5 and 12.2 A,
respectively, greatly exceed the mean distances
between neighbouring atoms a of the medium,
that is, the continuum approximation is reason-
ably accurate in this case. Our calculation has
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shown close electron energies in the self-
consistent, 2S, and non-self-consistent, 2P, states.
In the three-layer case the 2P state has a higher
energy level than the 2S state. Since the dipole
transfer to the 1S state is possible only from the
2P state, the excited self-consistent 2S state can be
expected to have a longer lifetime in the three-
layer model.

Table 1 also yields an approximate estimate for
the luminescence band for the three layer model,
which is A Wap,15s =0.61 eV (ca 2000 nm), i.e. it
lies in the far-infrared range. It might be
interesting to experiment with a band which being
the polaron one could only be identified by a pre-
liminary estimation of the qualitative effects that
pH, ionic strength and temperature produce on
the properties of the ‘polaron bands.’

THE DIELECTRIC CAVITY MODEL AND THE
THEORY OF ELECTRON TRANSFER

The above considerations indicate that the electro-
static model of the protein globule is suitable for
a consistent description of various processes per-
taining to photoexcitation and of electron transfer
processes. For ekample, the probability » with
which the electron of the excited self-consistent 2S
state of the protein molecule can tunnel from
donor to acceptor can be given by the following
expression: '°

w=L? exp(— %) (z|E.T)'?

X exp[—(E:— J)*J4E.T] (12)

E.=1/8x¢ j | Das — Dacs |2 dr

where L is the matrix element of tunnelling, D can
be determined from Eqn (3), J is the reaction
heat, & is the averaged frequency of polarization
oscillations in the molecule and E; is the total
reorganization energy of the medium. Values of L
and Dy can only be determined if the acceptor
model is defined.

It follows in particular from Eqn (3) that the
probability of the tunnelling in the electrostatic
model considered is proportional to the rate of the
chemical reaction and relates to the form of the
electron states by the tunnelling matrix element L
and inductions D;s and D,. In this case of
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X(3)

Figure 5. Distribution of electron density in the protein
globule for the three-layer model; p(X) = 4xX?¥3(X); 1 is
the zero mode and 2 is the first mode.

extended electron states we can expect that the
constant of the reaction rate should relate to the
pH of the solution and the spatial distribution of
charged amino acid groups, since the induction
D,s{¥] of Eqn (3) depends on the polaron wave
function for the most polarizable parts of the
protein molecule in the layer R, < r < R, of our
model (Fig. 5).

DISCUSSION

The introduced representations of large-radius
extended states permit a completely new approach
to the problem of electron transfer to large dis-
tances. The above results for the model of a
dielectric cavity show that the radius of the first
excited state is comparable to the size of the
globule, which suggests that the whole globule is
involved in the process of forming such a state. If
the acceptor is near the globule and the extended
self-consistent state has a similar energy to one of
the acceptor’s electron states, then the represen-
tation of the electron as belonging to the globule
or the acceptor seperately makes no sense. If the
acceptor is far from the globule, then it is signifi-
cant which is the value of the tunnelling matrix
element L of the electron transfer [Eqn (12)]. For
a large-radius state it may be several orders of
magnitude more than for a small-radius state.
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Ju

*=q

Figure 6. Simple branching of the configuration electron
transfer coordinate g.

Every excited self-consistent state may be put in
accordance with configuration coordinates. For a
consistent description of electron transfer it is
necessary to take into account that an electron can
jump into intermediate self-consistent states of
the acceptor and then to to the ground state.
Therefore, a complex picture of electron transfer
may be possible with branching of the chemical
reaction coordinate (see Fig. 6). This example is a
very simple case where the electron transfer from
state B to state C may be both radiative and non-
radiative, and in more general cases cascade
radiative and non-radiative processes are possible.

The existence of excited self-consistent states
may lead to interesting effects on the EPR and
NMR, lines, IR absorption, etc., which can be
used to identify these states. The discussion of
these problems is outside of the scope of this
paper, however.

APPENDIX

Finding the polaron states in the globule

1. We shall seek spherically symmetric solutions
of differential Eqns (6)—(7) with boundary condi-

tions (10) for the globule models of Figs 1 and 2.
We start with passing over to new variables:

A w 172
“Grwn % 0=l (5) oo
(Al

() =I W1 z(x)
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Normalization of the wave function yields

lee 1

w .
I | -%P 22

where

r= S Y2 (X)X? dX
0

The relationship (Al) can then be rewritten as

2
r= et &I' X;
2 172 _ Y(X) ,
‘I’(I'): (;) p3’2e3ﬁ 3 Fz?gﬁ; (Al )
Z,U.e3 Z(X
II(r) = 72 1"(2"2)
We also introduce the notation &(X):

®(r)=(| W|le)P(X).

By substituting Eqns (A1) into Eqns (6) and (7),
we obtain equations with spherically symmetrical
solutions:

d’Y(X) 2 dY(X)
dx? X dX
+YXO[Z(X)+d(X)-1]=0
d’Z(Xx) 2 dzZ(x) 42
. 2 -
T % T dx +xX)Y:X)=0

For the protein globule (Fig. 1):

N & N &o

_n_+ 1—__

X XR( el) X< Xr
d(X)=

N

— >

Xx X2 Xr

where Xg is the scaled radius of the globule such
that R = (h%[2ue®)&T Xr. The new parameter N
is proportional to the charge g = Ze, so that

2 eq &
M _rz=2
N= (|W|) neo - e

The piecewise-constant function x (X) breaks on
the surface of the globule so that

(x) = &0l € X < Xr
B X > Xr
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Analogously, for the three-layer model of Fig. 2:

”_V.52+__1l’_<§2_§2>
X g Xr \&2 &

+ N (1—9) X < Xg,

= XRz [37]
d(X)= < N N
&o €0
—_—t {1l - Xr, € X< Xg,
X £2+XR,( ez) R R
N
— X > Xr
X ?
éo/é'o X < Xg,
x(X)= { &f&2 Xr, € X < Xy,
X2 XR)

The solution of Eqns (A2) should satisfy the
infinity conditions following from Eqn (10), be
finite at zero and meet the corresponding internal
boundary conditions at points of breaks in the
piecewise-constant function x (X).

The boundary solutions for Eqns (A2) have the
form

2Y'(0) + N? Y(0) = Y(0) =0,
: Z'(0)= Z(0)=0 (A3)

For the internal boundary conditions:

Y(XRr, — 0) = Y(Xr, +0),
Y'(Xr,—0)=Y'(Xg;+0)
Z(Xr,— 0)= Z(Xg, + 0),
EGZ'(XR, —0) =611 Z'(XR, +0)
Here i=1 for the two-layer globule (R, =R,
€2=4§6) and i=1, 2 for the three-layer globule
(€3 =6).

2. The solutions of the problem (A2) with
boundary conditions (A3) and internal boundary
conditions (A3’) were found in the same way as
the solutions of the polaron problem in a
homogeneous polar medium '* and of the F-centre
problem. !?

The procedure for finding solutions is obvious
for the polaron problem in a homogeneous polar
medium, so we shall take this case to describe the
algorithm. Then, as we have alrcady mentioned,
we shall pass over to the problems which are our
immediate interest.

2.1. The equations of the polaron in a
homogeneous medium can be regarded as the
particular case of Equs (A2) where ¢ =¢& and
N = 0. The mathematical formulation reduces to

(A3")

finding the solutions of the boundary-valued
problem:

Y"(X) + )3( Y'(X)+ Z(X)Y(X)- Y(X)=0
(A4)
Z”(x)+—2)?-Z'(X)+ Y3 (X) =0

Y'(0)=2'(0)=0; Y(o)=Z()=0

It was shown '2 that this problem has a number
of solutions in which Z,(X) (n=0,1,2,...)
monotonically tends to zero as X — 0, and Y,(X)
crosses the axis X n times, after which it tends to
zero as X — oo.

Now we change variables so that

= XY, n=XZ
and Egns (A4) assume the form

'+ X-1=0
7"+ ¢ X=0

@ =7(0)=0; §(o)=7"()=0

2.2. The solutions of Eqns (A5), which only
satisfy the left-hand boundary condition of
Eqns (A6) in the neighbourhood of the point
X =0, may be represented as power series:

X)) =a X+ aX®+ a3X3+
M X)=bi X+ b X>+ b3 X3 + -

If we substitute these series into Eqns (AS), we
can see that all coefficients a; and b; are expressed
in terms of ai=a and b, =b. Confining
ourselves to the first few terms of the series, we
can, at a point Xp which is not distant from
X=0, find a desirably accurate values of
¢ (Xo; a, b) and 9(Xo; a,b) and their derivatives
corresponding to definite values of parameters a
and b.

2.3. For the system of differential equations
(A5) we define the Cauchy problem in the interval
[Xo, Xk]. To this end, for X = Xp (Xo is small),
we deterinine {(Xo; a,b) and n(Xo;a,b),
n'(Xo; a, b) at prescribed values of @ and b. Then
the solution is found numerically on a computer
by the standard Runge—Kutta method.

Note that the second equation of Eqns (AS)
yields a convex function 9(X), so that "(X) <0
for all X > 0. This property of n(X) is central in
finding the solution of a boundary-value problem.
If we succeed in choosing the values of ¢ and b
such that »(X) tends to a constant as X — o,

(A5)

(A6)
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¥ 2(X)

Figure 7. Functions y(X) for various initial data given by
a and b: (1) a=1.2, b=2.0; (2) a=1.1, b=2.0;
{3)a=1.02, b=1.94; (4) a=1.0, b=2.0.

then {(X) will tend to zero. This would mean a
solution of the boundary-value problem of
Eqns (AS) and (A6) is found.

2.4. We now choose the values of parameters a
and b and solve within an interval [Xp, Xk] the
emerging Cauchy problems. Figure 7 shows some
of such solutions. Take an Xx which corresponds
to the maximum of one of them, such that a = o*
and b=b"* (a* and b* are definite numbers).
Define a function

F(a,b) = v'(Xk; a,b)

Let us now take the Cauchy problem for a new
interval [Xo, Xk}, which, when solved for some a
and b, will yield the values of the function
F(a, b). The equation

F(a,b)=0 (A7)
is an implicit dependence between a and b. Here,
the choice of Xk determines one of the points of
this dependence which is F(a*, b*)=0.

The dependence (A7) in the prescribed intervals
of a and b may be found with the CURVE
program complex.?? Figure 8 shows a curve which
was obtained with this program.

The solutions of the Cauchy problem for a and
b along the curve can be seen in Fig. 9. An
analysis of the curves {(X) suggests the existence
of a series of solutions of the boundary-value
problem in Eqns (AS) and (A6). They may be
arranged as follows: {,(X), with n=0,1,2,...,
crosses the axis X, n times, after which it
exponentially tends to zero; and n,(X) grows
monotonically to its extreme value 5,(e0).

2.5. We define a system of two functions of
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10¥ b

Ry ———————
0"y 2 3 a4 s

Figure 8. Dependence between a and b following from
Eqn (A7) at X=10.

three variables:
Fl(a) bv XK) = f’(XK; a, b)
Fa(a,b, Xx) =9'(Xx; a,b)

This definition means that for the values of F;
and F; to be determined, the Cauchy problem
should be solved in the interval [ Xo, Xx] with the
initial values corresponding to those of
parameters @ and b. The values of ¢’ and 5’ in
the end of the integration path give the values of
the functions. The system of equations

Fi(a,b, Xx)=0
Fy(a,b, Xx)=0

locates a curve in the space of variables @, b and
Xx. We determined pieces of several branches of
the curve. To this end, we chose initial
approximations to each branch from the
calculations above, then ran the program CURVE
to find points of the curve (A9) which correspond
to the values of the variables a, b and Xk in the
prescribed range.

As Xk — o, the conditions (A9) are identical
with the right-hand boundary conditions (A6).
Actually, in polaron problem we only had to go
up to Xx = 10 for the zero mode (n =0), Xk =15
for the first mode (n=1) and Xi; =20 for the
second mode (n = 2) to obtain the solutions of the
boundary-valued problem in Eqns (AS) and (A6)
with a given accuracy.

Figure 10 shows two of the solutions obtained
by this procedure.

3. The F-centre problem differs from the
polaron problem for a homogeneous polar
medium by additional terms NY/ X in the first of
Eqns (A3), where N is the problem’s parameter.

(A8)

(A9)



164 N. K. BALABAEV ET AL.
2t 2( 2r
1 (X) 1/7\¢ (X) £(X)
G o d o NG *
| -5 - 5 0 - g
(a) (c)

(d)

{f)

Figure 9. Solutions of the Cauchy problem for various a and b on the curve {A9) of Fig. 8:(a) a=0.733, b = 1.664;
(b) @a=1.003, b=1.921; (c) a=1.025, b=1.942; (d) a=0.623, b=1.662; (e} a=0.900, b=2.074; (f) a=1.338,

b=2.727.

We sought solutions for various N on the curves
which pass through the polaron solutions. The
system of equations is

Fi(N,a,b)={'"(Xx; N,a,b)=0
F(N,a,b)=14'"(Xk; N,a,b)=0

The curve (A10) started from the known values at
N=0 for the polaron states. The actual
dependences were found by the CURVE program.
To refine the solution for a given N we introduced
new functions:

Fi(a,b, Xx) = ¢'(Xk; N, a, b)
Fy(a, b, Xx) =1'(Xk; N, a, b)

and proceeded as for the polaron case for system
(A9).

4. The above polaron and. F-centre problems
help to find spherically symmetrically polaron
states in various models of the protein globule.
Let us consider the two-layer model of Fig. 1, for
which the case of many-layer models differs
merely in technical details.

The initial model [Eqns (6) and (7)] takes as
physical parameters the values {e1, &2, &, R, Z}.
The boundary-valued problem in Eqns (A2) and
(A3) contains Xr and N, instead of R and Z,

(A10)

2[ 21
VA 1NELX)
Y 5 15 X o 15 X
1 - ;— ndX) 9
-20 -2 - 'S— 'nt(X)
(a) (b)

Figure 10. Solutions of the boundary-value problem in
Eqns (A5) and (A6): (a) a=1.021, b=1.938;
(b} a = 1.091, b=2.320.

which are interrelated as
 2ue?
€’
Since the value of I'= {5 Y*(X)X? dX is not
known beforehand, the values of Xgr and N,
which appear in the equations and correspond to
a preset globule radius R and charge Z, are not

known. The only parameter known is their
product:

Xz =R r-t N=z-£9-r (Al1)
0

2
NXgr = 2"—8 . @ = constant

P (A12)
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The right-hand side of Eqn (A12) contains
universal constants and model parameters only.
The dependence (Al2) suggests the following
algorithm for finding the solutions, as follows.

Ist step. We change variables as { = Y.X and
n=ZX. Then, representing {(X) and 5(X) as
power series:

(X)) =a X+ aX+ -
1 X)=b X+ b2 X2+ ...

and substituting them in (A2) we find a two-
parameter family of solutions of differential
equations (A2) in the neighbourhood of the point
X =0 which satisfy the left-hand boundary
condition (A3). Parameters a and b are equal to
Y(0) = Yo and Z(0) = Z,, respectively.

2nd step. We start from the known solutions
for the F-centre. Let Tg, Zg5 and N* be the values
of medium parameters which determine a mode
of the F-centre. Then, from Eqn (Al2),
XK= constant| N*. The system of equations is
defined as

Fy(Yo, Zo, &1) = ' (Xk; Yo, Zo,£1) =0 (A3

F2(Yo, Zo, &1) = ' (Xxa Yo, Zo, £1) =0 )
Put £ =80 and N=N* Then the point
(Yo, Zo,&1) = (Ys, Zo, €0) will belong to the curve
(A13), because of the initial values of parameters.
We may make use of the CURVE program to
locate the branch of the curve which passes
through this point. Therefore, we can go from
€, =80 to & =20 which was prescribed to the
two-layer model.

3rd step. The system of equations is

G1 (Yo, Zo, N) = {'(Xk; Yo, Zo, N)=0 Ald

G2(Yo, Zo, N) = n'(Xk; Yo, Zo, N)=0 A9
Starting from the previous solution at & = 80,
&1 =20 and appropriate parameter values of Yo,
Zo and N, we locate the branch of the curve (A14)
by the CURVE program. Then we -calculate
I'={, Y2X2dX, at each of the found points of
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We can move along the curve until we reach the
parameters R=15 A and Z=1 [from Eqn (A12)
these values will emerge one at a time]. In this
way, we can find a solution to this case of the
boundary-value problem.

4th step. If desired, the solution may be refined:
Xk should become the parameter and should
move towards larger values. Examples of
solutions for the globule’s polaron states are
shown in Fig. 4,

5. The spectral electron’s characteristics in the
potential field of self-consistent polaron states
were found by solving the linear Schrédinger
equation with potential U(X) = Z,(X)+ (X)),
where Z,(X) is the nth solution of the boundary-
value problem in Eqns (A2) and (A3). However,
there are some limitations caused by the function
Zn,(X) defined for a discrete sequence of non-
uniformly spaced points only. It is common
practice to use interpolation equations here.
However, we proceeded in a different way and
appended the linear Schrodinger equation:

n_l(l+1) n 5l —
X 2 x+x(X+<I>) MAx=0 (AlS)

by the following equations for polaron states:
i X+8) =0
7"+ x(X)X=0

and combined the three into a single system of
differential equations. The variable x is absent in
Eqgns (A16), and therefore 5(X) of Eqn (AlS)
emerges every time in the same form, which also
corresponds to the polaron mode at points
conforming to Egn (A15) and is independent of
the values and initial data for x(X). At given /
(orbital moment) and » (number of zeroes), N was
found by the half-division procedure. The results
are given in Table 1.

(Al6)
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